

Welcome to django-throttle-requests’s documentation!

Contents:

	Introduction

	Installation

	Configuration

Indices and tables

	Index

	Module Index

	Search Page

Introduction

In the context of web applications, limiting the number of requests a host or user makes solves two problems:

	withstanding Denial-of-service attacks (rate-limiting [http://en.wikipedia.org/wiki/Rate_limiting])

	ensuring that a user doesn’t consume too many resources (throttling)

Rate-limiting is often accomplished with firewall rules on a device, iptables, or web server. They are enforced at the network or transport layer before the request is delivered to the application. For example,
a rule such as “An IP address may make no more than 20 reqs/sec” would queue, or simply drop any requests that exceeded the maximum rate, and the application will not receive the request.

Throttling can be thought of as application middleware that maintains a count of users’ requests during a specific time period. If an incoming request exceeds the maximum for the time period, the user receives a response (e.g. HTTP 403 [http://en.wikipedia.org/wiki/HTTP_403]) containing a helpful error message.

A good example of throttling is Twitter’s controversial API rate-limiting [https://dev.twitter.com/docs/rate-limiting/1.1]. Twitter enforces several types of limits depending on the type of access token used and the API function used. An example of a rule is “a user may make no more than 150 requests per 15-minute window”.

Note

Although Twitter uses the term rate limiting, I find it helpful to distinguish the concepts of network-layer rate limiting versus application-specific request limiting (throttling).

Installation

	Install the library with pip:

sudo pip install django-throttle-requests

	Add the directory throttle to your project’s PYTHONPATH.

	Insert the following configuration into your project’s settings:

THROTTLE_ZONES = {
 'default': {
 'VARY':'throttle.zones.RemoteIP',
 'NUM_BUCKETS':2, # Number of buckets worth of history to keep. Must be at least 2
 'BUCKET_INTERVAL':15 * 60 # Period of time to enforce limits.
 'BUCKET_CAPACITY':50, # Maximum number of requests allowed within BUCKET_INTERVAL
 },
}

Where to store request counts.
THROTTLE_BACKEND = 'throttle.backends.cache.CacheBackend'

Force throttling when DEBUG=True
THROTTLE_ENABLED = True

	Use the @throttle decorator to enforce throttling rules on a view:

from throttle.decorators import throttle

@throttle(zone='default')
def myview(request):
 ...

Configuration

	
django.conf.settings.THROTTLE_ENABLED

	

	Default:	not settings.DEBUG

Optional boolean value that is used to control whether or not throttling is enforced. To test throttling
when DEBUG is True, you must also explicitly set THROTTLE_ENABLED = True.

	
django.conf.settings.THROTTLE_BACKEND

	The path to the class that implements the backend storage mechanism for per-user request counts.

	
django.conf.settings.THROTTLE_ZONES

	A dictionary that contains definitions of the rate limiting rules for your application.

Index

 T

T

 	
 	THROTTLE_BACKEND (in module django.conf.settings)

 	
 	THROTTLE_ENABLED (in module django.conf.settings)

 	THROTTLE_ZONES (in module django.conf.settings)

 nav.xhtml

 Table of Contents

 		Welcome to django-throttle-requests's documentation!

 		Introduction

 		Installation

 		Configuration

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

